

Client:

Certificate of Analysis

Received: 11SEP2025 | Issued: 17SEP2025

Customer Information

Spider Extracts

Attention: joe@spiderextracts.com

Address: P.O. Box 332

Manalapan, New Jersey 07726

Testing Facility

Lab: Cora Science, LLC

Address 8000 Anderson Square, STE 113

Austin, Texas 78757

Contact: info@corascience.com

(512) 856-5007

Sample Image(s)

Sample Information

Name: Citrus Mint

Lot Number: 001

Description: Pressed Tablet

 Condition:
 Good

 Job ID:
 ISO04954

 Sample ID:
 I13609

 Received:
 11SEP2025

 Completed:
 13SEP2025

 Issued:
 17SEP2025

Test Results

Mitragyna Alkaloids (UHPLC-D	AD) Method	Method Code: T102			Tested: 13SEP2025 0346	
PARAMETER	SPECIFICATION	RESULT	UNIT	LOQ	NOTES	
Mitragynine	Report Results	0.438	mg/unit	0.016	N/A	
7-Hydroxymitragynine	Report Results	42.9	mg/unit	0.016	N/A	
Paynantheine	Report Results	0.0331	mg/unit	0.016	N/A	
Speciogynine	Report Results	0.0268	mg/unit	0.016	N/A	
Speciociliatine	Report Results	<loq< td=""><td>mg/unit</td><td>0.016</td><td>N/A</td></loq<>	mg/unit	0.016	N/A	
Total Mitragyna Alkaloids	Report Results	43.4	mg/unit	0.016	N/A	

Mitragyna Alkaloids (UHPLC-DA	AD) Method	Method Code: T102			Tested: 13SEP2025 0346		
PARAMETER	SPECIFICATION	RESULT	UNIT	LOQ	NOTES		
Mitragynine	Report Results	0.0783	w/w%	0.0028	N/A		
7-Hydroxymitragynine	Report Results	7.65	w/w%	0.0028	N/A		
Paynantheine	Report Results	0.00592	w/w%	0.0028	N/A		
Speciogynine	Report Results	0.00478	w/w%	0.0028	N/A		
Speciociliatine	Report Results	<loq< th=""><th>w/w%</th><th>0.0028</th><th>N/A</th><th></th></loq<>	w/w%	0.0028	N/A		
Total Mitragyna Alkaloids	Report Results	7.74	w/w%	0.0028	N/A		

Residual Solvents: Class I (GC-MS)		Method Code: T201			Tested: 12SEP2025 0152	
PARAMETER	SPECIFICATION	RESULT	UNIT	LOQ	NOTES	
1,1-Dichloroethene	NMT 8	<loq< th=""><th>ug/g</th><th>0.40</th><th>PASS</th></loq<>	ug/g	0.40	PASS	
1,1,1-Trichloroethane	NMT 1500	<loq< th=""><th>ug/g</th><th>75</th><th>PASS</th></loq<>	ug/g	75	PASS	
Tetrachloromethane	NMT 4	<loq< th=""><th>ug/g</th><th>0.20</th><th>PASS</th></loq<>	ug/g	0.20	PASS	
Benzene	NMT 2	<loq< th=""><th>ug/g</th><th>0.10</th><th>PASS</th></loq<>	ug/g	0.10	PASS	
1,2-Dichloroethane	NMT 5	<loq< th=""><th>ug/g</th><th>0.25</th><th>PASS</th></loq<>	ug/g	0.25	PASS	

Residual Solvents: Class II (GC-MS) Method Code: T201			SEP2025 0152		
PARAMETER	SPECIFICATION	RESULT	UNIT	LOQ	NOTES
Methanol	NMT 3000	<loq< td=""><td>ug/g</td><td>75</td><td>PASS</td></loq<>	ug/g	75	PASS
Acetonitrile	NMT 410	<loq< td=""><td>ug/g</td><td>41</td><td>PASS</td></loq<>	ug/g	41	PASS
Dichloromethane	NMT 600	<loq< td=""><td>ug/g</td><td>15</td><td>PASS</td></loq<>	ug/g	15	PASS
1,2-Dichloroethene, (E)	NMT 1870	<loq< td=""><td>ug/g</td><td>47</td><td>PASS</td></loq<>	ug/g	47	PASS
1,2-Dichloroethene, (Z)	NMT 1870	<loq< td=""><td>ug/g</td><td>47</td><td>PASS</td></loq<>	ug/g	47	PASS
Tetrahydrofuran	NMT 720	<loq< td=""><td>ug/g</td><td>18</td><td>PASS</td></loq<>	ug/g	18	PASS
Cyclohexane	NMT 3880	<loq< td=""><td>ug/g</td><td>97</td><td>PASS</td></loq<>	ug/g	97	PASS
Methylcyclohexane	NMT 1180	<loq< td=""><td>ug/g</td><td>30</td><td>PASS</td></loq<>	ug/g	30	PASS
1,4-Dioxane	NMT 380	<loq< td=""><td>ug/g</td><td>38</td><td>PASS</td></loq<>	ug/g	38	PASS
Toluene	NMT 890	<loq< td=""><td>ug/g</td><td>22</td><td>PASS</td></loq<>	ug/g	22	PASS
Chlorobenzene	NMT 360	<loq< td=""><td>ug/g</td><td>9.0</td><td>PASS</td></loq<>	ug/g	9.0	PASS
Ethylbenzene	NMT 2170	<loq< td=""><td>ug/g</td><td>54</td><td>PASS</td></loq<>	ug/g	54	PASS
o/p-Xylene	NMT 2170	<loq< td=""><td>ug/g</td><td>54</td><td>PASS</td></loq<>	ug/g	54	PASS
m-Xylene	NMT 2170	<loq< td=""><td>ug/g</td><td>54</td><td>PASS</td></loq<>	ug/g	54	PASS
Isopropylbenzene	NMT 70	<loq< td=""><td>ug/g</td><td>1.8</td><td>PASS</td></loq<>	ug/g	1.8	PASS
Hexane	NMT 290	<loq< td=""><td>ug/g</td><td>7.3</td><td>PASS</td></loq<>	ug/g	7.3	PASS
Nitromethane	NMT 50	<loq< td=""><td>ug/g</td><td>1.3</td><td>PASS</td></loq<>	ug/g	1.3	PASS
Chloroform	NMT 60	<loq< td=""><td>ug/g</td><td>1.5</td><td>PASS</td></loq<>	ug/g	1.5	PASS
1,2-Dimethoxyethane	NMT 100	<loq< td=""><td>ug/g</td><td>2.5</td><td>PASS</td></loq<>	ug/g	2.5	PASS
Trichloroethene	NMT 80	<loq< td=""><td>ug/g</td><td>2.0</td><td>PASS</td></loq<>	ug/g	2.0	PASS
Pyridine	NMT 200	<loq< td=""><td>ug/g</td><td>5.0</td><td>PASS</td></loq<>	ug/g	5.0	PASS
2-Hexanone	NMT 50	<loq< td=""><td>ug/g</td><td>5.0</td><td>PASS</td></loq<>	ug/g	5.0	PASS
Tetralin	NMT 100	<loq< td=""><td>ug/g</td><td>2.5</td><td>PASS</td></loq<>	ug/g	2.5	PASS

Residual Solvents: Class	III (GC-MS) Method	Method Code: T201		Tested: 12SEP2025 0152	
PARAMETER	SPECIFICATION	RESULT	UNIT	LOQ	NOTES
Pentane	NMT 5000	<loq< th=""><th>ug/g</th><th>125</th><th>PASS</th></loq<>	ug/g	125	PASS
Ethanol	NMT 5000	<loq< td=""><td>ug/g</td><td>125</td><td>PASS</td></loq<>	ug/g	125	PASS
Diethyl Ether	NMT 5000	<loq< th=""><th>ug/g</th><th>125</th><th>PASS</th></loq<>	ug/g	125	PASS
Acetone	NMT 5000	<loq< th=""><th>ug/g</th><th>125</th><th>PASS</th></loq<>	ug/g	125	PASS
Ethyl Formate	NMT 5000	<loq< th=""><th>ug/g</th><th>125</th><th>PASS</th></loq<>	ug/g	125	PASS
Isopropanol	NMT 5000	<loq< th=""><th>ug/g</th><th>125</th><th>PASS</th></loq<>	ug/g	125	PASS
Methyl Acetate	NMT 5000	<loq< td=""><td>ug/g</td><td>125</td><td>PASS</td></loq<>	ug/g	125	PASS
Methyl tert-Butyl Ether	NMT 5000	<loq< td=""><td>ug/g</td><td>125</td><td>PASS</td></loq<>	ug/g	125	PASS
1-Propanol	NMT 5000	<loq< td=""><td>ug/g</td><td>125</td><td>PASS</td></loq<>	ug/g	125	PASS
2-Butanone	NMT 5000	<loq< th=""><th>ug/g</th><th>125</th><th>PASS</th></loq<>	ug/g	125	PASS
Ethyl Acetate	NMT 5000	213	ug/g	125	PASS
2-Butanol	NMT 5000	<loq< th=""><th>ug/g</th><th>125</th><th>PASS</th></loq<>	ug/g	125	PASS
2-Methyl-1-Propanol	NMT 5000	<loq< th=""><th>ug/g</th><th>125</th><th>PASS</th></loq<>	ug/g	125	PASS
Isopropyl Acetate	NMT 5000	<loq< th=""><th>ug/g</th><th>125</th><th>PASS</th></loq<>	ug/g	125	PASS
Heptane	NMT 5000	<loq< th=""><th>ug/g</th><th>125</th><th>PASS</th></loq<>	ug/g	125	PASS
1-Butanol	NMT 5000	<loq< th=""><th>ug/g</th><th>125</th><th>PASS</th></loq<>	ug/g	125	PASS
Propyl Acetate	NMT 5000	<loq< th=""><th>ug/g</th><th>125</th><th>PASS</th></loq<>	ug/g	125	PASS
4-Methyl-2-Pentanone	NMT 5000	<loq< th=""><th>ug/g</th><th>125</th><th>PASS</th></loq<>	ug/g	125	PASS

Work Order: ISO04954 Sample: I13609	Received: 11SEP2	Revision: 00 Page 3			
PARAMETER	SPECIFICATION	RESULT	UNIT	LOQ	NOTES
Isoamyl Alcohol	NMT 5000	<loq< td=""><td>ug/g</td><td>125</td><td>PASS</td></loq<>	ug/g	125	PASS
Isobutyl Acetate	NMT 5000	<loq< td=""><td>ug/g</td><td>125</td><td>PASS</td></loq<>	ug/g	125	PASS
1-Pentanol	NMT 5000	<loq< td=""><td>ug/g</td><td>125</td><td>PASS</td></loq<>	ug/g	125	PASS
Butyl Acetate	NMT 5000	<loq< td=""><td>ug/g</td><td>125</td><td>PASS</td></loq<>	ug/g	125	PASS
Anisole	NMT 5000	<loq< td=""><td>ug/g</td><td>125</td><td>PASS</td></loq<>	ug/g	125	PASS
Dimethylsulfoxide	NMT 5000	<loq< td=""><td>ug/g</td><td>125</td><td>PASS</td></loq<>	ug/g	125	PASS

Additional Report Notes

T102 result, LOQ and unit converted from w/w% to mg/unit using a laboratory measured unit weight of 0.560 grams.

Revision History

rev 00 - Initial release.

Abbreviations

ID: identification, N/A: not applicable, LOQ: limit of quantitation, CFU: colony forming units, w/w%: weight by weight percent, mg: milligrams, g: grams, ug: micrograms, mL: milliliters, ND: not detected, <LOQ: below limit of quantitation, NMT: no more than, **NLT**: no less than, **UHPLC**: ultra-high performance liquid chromatography, **GC**: gas chromatography, **DAD**: diode array detection/detector, MS: mass spectroscopy/spectrometer, ICP: inductively coupled plasma, ISO: International Organization for Standardization, **USP:** United States Pharmacopeia

Position:

Laboratory Director

Authorization

This report has been authorized for release from Cora Science by:

John West Signature: **Department:** Management

Date: 17SEP2025 Tyler West Name: